![]() ![]() *** 科目 *** 数Ⅰ・A数Ⅱ・B数Ⅲ高卒・大学初年度 *** 単元 *** 数と式不等式二次関数二次不等式三角比三角比と図形集合・命題・証明順列・組合せ確率整数の性質 ※高校数学Ⅰの「三角比と図形」(正弦定理,余弦定理など)について,このサイトには次の教材があります.
この頁へGoogleやYAHOO ! などの検索から直接来てしまったので「前提となっている内容が分からない」という場合や「この頁は分かったがもっと応用問題を見たい」という場合は,他の頁を見てください. が現在地です. ↓正弦定理(解説) ↓正弦定理(問題) ↓分数型の方程式 ↓余弦定理(解説) ↓三辺→角 ↓余弦定理の2次方程式 ↓筆算だけで解く問題(1) ↓筆算だけで解く問題(2) ↓最大角・最小角 ![]() ↓ヘロンの公式 ↓内接円の半径 ↓形状問題 ↓証明問題 ↓三角形を解く ↓センター問題(1) ↓センター問題(2) センター問題(3) |
![]() ■右図のような△ABCにおいて,
a≧b≧cならばA≧B≧C
です.(逆も成り立ちます.) つまり,
「対辺が長い」ならば「角度が大きい」
といえます.・・・(1)
(「角度が大きい」ならば「対辺が長い」) |
(証明)・・余弦定理による証明・・・論理は簡単,変形はやや複雑
(方針)a≦b←→cosA≧cosB←→A≦Bを示す. cosA-cosB ![]() = ![]() = ![]() = ![]() = ![]() = ![]() = ![]() ここで,a,b,c>0だからc+a+b>0 また,三角形の成立条件によりc<a+bだからc-a-b<0 ゆえに,a≦b←→cosA≧cosB←→A≦B |
(別の証明)・・正弦定理による証明・・論理は複雑,変形は少ない
(方針)a≦b←→sinA≦sinB←→A≦Bを示す. 正弦定理により,a=2RsinA,b=2RsinBだから a≦b←→sinA≦sinBが言える. 0°<A,B<180°においてsinA≦sinBとなる組合せは次の通り. ![]()
となり矛盾 (*2)A2+B2≧90°+90°=180°となり矛盾 1)2)よりA≦B |
△ABCにおいてA,B,Cのうち最も大ききな角度を最大角,最も小さな角を最小角と呼ぶと,上の図においては最大角はAで最小角はCです. (1)の関係から,最大角,最小角とその対辺の長さについて次のように言えます.
三角形において,最大角には最大辺が対応する.
三角形において,最小角には最小辺が対応する.
例
(答案)
三角形の3辺の長さが,7,8,13 のとき,この三角形の最大角を求めなさい. 辺の長さ13が最も長いから,13に対応する角を求める. cosθ=(72+82-132)/(2・7・8)=-1/2 θ=120°・・・(答) |
《解説》
筆算で角度まで求められるのは,30°または45°の整数倍の角度に限られますが,cosθの値まででよいときはそのような制限はなくなります. 例 三角形の3辺の長さが,次のように与えられているとき,この三角形について最大角の余弦を求めなさい. a=9,b=8,c=7 (答案) aが最大なので,Aが最大 cosA=(82+72-92)/(2・8・7)=2/7・・・(答) |
![]() ![]() |
■このサイト内のGoogle検索■ |