大きな区分
高校数学(←Top)>> 高校数学Ⅱ・B
>> 複素数・高次方程式
現在地と前後の項目(サブメニュー)

虚数単位・複素数の定義(解説)
複素数の計算1
複素数の計算2
複素数の計算3
複素数の対称式,値の代入
複素数のいろいろな問題
共役複素数
解の公式1
解の公式2
解と係数の関係
判別式
2直線を表わす方程式
剰余の定理(解説)
剰余の定理
剰余の定理(受験向き)
入試問題(剰余の定理,割り算の原理)
因数定理
高次方程式(3次)
高次方程式(4次)
文字係数方程式の解き方
3次方程式の解と係数の関係(1)
3次方程式の解と係数の関係(2)
1の虚数3乗根ω
実係数方程式の虚数解,有理係数方程式の無理数解

二次方程式の解の公式

【解説】
【二次方程式の解の公式 I 】
 2次方程式 ax2+bx+c=0 ( a0 )の解は

x=.−b±.b2−4ac√nnnnnni2annnnnnnnnnnn
です.

※ これを使えばどんな2次方程式でも解けます.通常 a , b , c として実数を考えますが, a , b , c が複素数の場合でもこの公式で解けます.
※ 根号内:判別式 D=b2−4ac が負の場合は,虚数単位 i を用いて表わします.
.−5√nni =.5√ni i
.−4√nni =.4√ni i=2i
【二次方程式の解の公式 II 】
 2次方程式 ax2+2b’x+c=0 ( a0 )の解は

x=.−b’±.b’ 2−ac√nnnnnniannnnnnnnnnnn
です.
(証明)
左の解の公式 I より

x=.−2b’±.4b’ 2−4ac√nnnnnnnni2annnnnnnnnnnnnn =.2(−b’±.b’ 2−ac√nnnnnnni )2annnnnnnnnnnnnnn

  =.−b’±.b’ 2−ac√nnnnnniannnnnnnnnnnn

となって,必ず2で約分できるので,約分した結果を公式とします.
※ b’ として,x の係数の半分の数字を使っていることに注意.(2b’b
 2x2+5x+1=0 を解くには a=2 , b=5 , c=1 を解の公式に代入します.

x=.−5±.52−4 · 2 · 1√nnnnnnnnni2·2nnnnnnnnnnnnnnn=.−5±.17√nni4nnnnnnnn

解を求めるプログラム
○ 教科書や授業でよく使われる形
 ↓正負の整数を入力して[解を求める]
()x2+()x+()=0 解を求める消去
[↑ヘルプ] [問題をする↓]
o==メニューに戻る
■[個別の頁からの質問に対する回答][二次方程式の解の公式について/17.5.30]
通信制高校で学んでいる76歳の男性(老人)です。 60年近く学問と遠ざかっていて数学Ⅱは難解ですが、解の公式の解説を見てよく理解でき又、 虚数単位の計算もあり、助かりました。 ありがとうございました。
=>[作者]:連絡ありがとう.
■[個別の頁からの質問に対する回答][二次方程式の解の公式について/16.12.21]
解を求めるプログラムで分数や小数の2次方程式が解けない
=>[作者]:連絡ありがとう.正負の整数を入力して[解を求める]と書いてあるのだから,正負の整数になるようにするのです.
 読者がカチンと来るか,当然だと思うかは分かりませんが,その頁は高校生向けの頁で,分数や小数係数なら分母を払うとか10倍,100倍,...すれば簡単に整数係数になります.
【分数の例1】
の場合
両辺に6を掛ける

【分数の例2】
の場合
両辺に12を掛ける


【小数の例1】
の場合
両辺に10を掛ける

【小数の例2】
の場合
両辺に100を掛ける
■[個別の頁からの質問に対する回答][二次方程式の解の公式について/16.11.9]
2次方程式(1)について教科書では b二乗ー4ac≧0 の時とありましたがどういう意味かわかりません
=>[作者]:連絡ありがとう.高校の数学Ⅱの教科書では,複素数を習ってから2次方程式の解の公式を習うので,解の公式についてb2−4ac≧0という制限は必要なく,b2−4ac<0の場合でも成り立ちます.だから,数学Ⅱの教科書には解の公式がb2−4ac≧0の場合だけ成り立つとは書いてありません.
 実際には,解の公式の説明が終わってから,判別式D=b2−4acの説明をするときに,
(1) D=b2−4ac>0のとき異なる2つの実数解を持つ
(2) D=b2−4ac=0のとき異なる実数の重解を持つ
(3) D=b2−4ac<0のとき異なる2つの虚数解を持つ
と書いてあるはずです.さらに,これらのうちで(1)でも(2)でも実数解になるからこれらをまとめて書くとb2−4ac≧0となります.

■このサイト内のGoogle検索■

△このページの先頭に戻る△
【 アンケート送信 】
… このアンケートは教材改善の参考にさせていただきます

この頁について,良い所,悪い所,間違いの指摘,その他の感想があれば送信してください.
○文章の形をしている感想は全部読ませてもらっています.
○感想の内で,どの問題がどうであったかを正確な文章で伝えていただいた改善要望に対しては,可能な限り対応するようにしています.(※なお,攻撃的な文章になっている場合は,それを公開すると筆者だけでなく読者も読むことになりますので,採用しません.)


質問に対する回答の中学版はこの頁,高校版はこの頁にあります