PC用は別頁
※高校数学Ⅲの「微分・導関数」について,このサイトには次の教材があります.
この頁へGoogleやYAHOO ! などの検索から直接来てしまったので「前提となっている内容が分からない」という場合や「この頁は分かったがもっと応用問題を見たい」という場合は,他の頁を見てください.  が現在地です.
微分係数,連続,微分可能
積の微分
商,分数関数の微分
合成関数の微分
無理関数の微分
媒介変数表示のときの微分法
同(2)
陰関数の微分法-現在地
重要な極限値(1)_三角関数
三角関数の微分
三角関数の微分(2)
指数関数,対数関数の微分
対数微分法
微分(総合演習)
漸近線の方程式
同(2)
凹凸と変曲点
総合--増減.極値.凹凸.変曲点.漸近線(1)
分数関数の増減.極値.漸近線
グラフの概形と漸近線(一覧)
*** 高卒から大学初年度程度 ***
逆三角関数の微分法 マクローリン展開 偏微分


■陰関数の導関数

■y=x2+3xのように,yがxの関数として解かれた形で表されているものを陽関数表示といいます。
■x2+y2=4のように,yがxの関数として明示的に解かれておらず,x,yの関係式が与えられているものを陰関数表示といいます。

■陰関数で表示されているときは,

「両辺をそのままxで微分」
を含む式を作る
について解く

という手順で導関数を求めることができます。このとき,導関数は,yを含んだ式になるのが普通です。
■例1
■例2
■陰関数で表示されているときは,1つのxの値に対してyがただ1つ定まるとは限らず,y’もただ1つとは限りません。
 x2+y2=4のとき,x=1→yは2つ,y’も2つ
導関数の表示にyも用いてのように表すことができます。

 xy=4のとき、x=2→yは1つ,y’も1つ

この場合のように,陽にも解ける関数を陰のまま微分してもかまいません:( は  と一致します。)

※以下の問題で,
「正答の場合に表示される図」⇒
「誤答の場合に表示される図」⇒
----------------
※解答すれば,解説が読めます.解答しなければ,解説は出ません.
[問題] 次の関係式からを求めなさい。
(正しいものを選択肢から選びなさい。)
[選択肢]





xy=3






x3+y3-3xy=0





cosy=sinx

dydx=tanx dydx=cotx

dydx=sinycosx dydx=cosxsiny



■[個別の頁からの質問に対する回答][陰関数の導関数について/17.8.7]
問3の解説の2行目の式で、yの微分になってしまっているところがあります。
問題3の解説の二行目-3(d/dy(x)y + x d/dy(y))は-3(d/dx(x)y + x d/dx(y)) では? ・解説の中で出てきた答えが選択肢の中にないのはなぜ? どれが正しいのかがわからず混乱しています。改善よろしくお願いします。
=>[作者]:連絡ありがとう.前半について,訂正しました.
後半について,そのような質問はあり得ないと考えていますが,一応確認のために加筆しました.(一勝一敗になる)

は,自明の理なので解説は不要だと思いますが.

[注]直前にPC版から入られた場合は,自動転送でスマホ版に来ていますので,ブラウザの[戻るキー]では戻れません(堂々巡りになる).下記のリンクを使ってメニューに戻ってください.
...(携帯版)メニューに戻る

...(PC版)メニューに戻る

■このサイト内のGoogle検索■

△このページの先頭に戻る△
【 アンケート送信 】
… このアンケートは教材改善の参考にさせていただきます

この頁について,良い所,悪い所,間違いの指摘,その他の感想があれば送信してください.
○文章の形をしている感想は全部読ませてもらっています.
○感想の内で,どの問題がどうであったかを正確な文章で伝えていただいた改善要望に対しては,可能な限り対応するようにしています.(※なお,攻撃的な文章になっている場合は,それを公開すると筆者だけでなく読者も読むことになりますので,採用しません.)


質問に対する回答の中学版はこの頁,高校版はこの頁にあります