![]() ![]() *** 科目 *** 数Ⅰ・A数Ⅱ・B数Ⅲ高卒・大学初年度 *** 単元 *** 式と証明点と直線円軌跡と領域三角関数 指数関数対数関数微分不定積分定積分 高次方程式数列漸化式と数学的帰納法 平面ベクトル空間ベクトル確率分布 ※高校数学Ⅱの「不定積分」について,このサイトには次の教材があります.
この頁へGoogleやYAHOO ! などの検索から直接来てしまったので「前提となっている内容が分からない」という場合や「この頁は分かったがもっと応用問題を見たい」という場合は,他の頁を見てください. が現在地です. ↓不定積分 ↓同(2) ↓同(3) ↓同 展開 ↓積分変数がy,t,uなど 積分定数と初期条件-現在地
*** 数学Ⅲ(三角,指数,対数,無理関数を含む) ***
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
○1つのxに対するF(x)の値
x=aのときy=bという形の式
が与えられていれば,この積分定数Cは決まります.すなわち,F(a)=bという式 すなわち,1つの通る点(a, b) ![]()
【要点】
一般に,導関数F'(x)だけが与えられたとき,元の関数F(x)の定数項Cは決まらない. 導関数F'(x)と初期条件F(a)=bが与えられると,定数項Cが決まり,関数F(x)が確定する
○[次の条件を満たす関数F(x)は確定できます]
《例題》
×[次の条件を満たす関数F(x)は確定できません] (1)では, (2)では F'(x)=2x, F(1)=3のとき,F(x)を求めなさい.(答案) F'(x)=2xだから
《要点》
まず不定積分を求め,次にCを定めます. |
《問題》 左の条件を満たす関数を,右から選びなさい.
○はじめに左の式を一つクリックし,続けて答をクリックすると消えます.
○間違えば消えません.間違ったときは,解答欄を連打するのではなく,問題を選び直すことから始めてください.間違ったとき,[解説]ボタンが見えている間にそれを押せば,「左側の問題に対する解説」が出ます. ○[解説]を使って解説を読む場合でも,読まない場合でも,新しい問題を選べば解答を再開できます.
※暗算ではできません.計算用紙を使って答えてください.
|
|
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]()
F'(x)=1より
→閉じる←
次にF(0)=5よりC=5 結局F(x)=x+5 次にF(1)=3よりC=3 結局 次にF(3)=0より18+C=0 C=−18 結局 次にF(0)=3よりC=3 結局 次にF(3)=1より6+C=1 C=−5 結局 次にF(1)=0より 結局 次にF(−1)=1より−2+C=1 C=3 結局 次にF(1)=−1よりC=−1 結局 次にF(5)=0より5+C=0 C=−5 結局F(x)=x−5 次にF(1)=0より 結局 |
![]() ![]() |
■このサイト内のGoogle検索■ |