現在地と前後の項目 2次関数のグラフ[標準形]/2次関数→頂点の座標/2次関数(標準形→頂点)/2次関数(標準形→グラフ)/2次関数(標準形→グラフ)2/2次関数(標準形→グラフ)3/2次関数(標準形→グラフ)4/平方完成の変形/平方完成2/平方完成3/頂点の座標/展開形→頂点の座標2/展開形→頂点の座標3/展開形→頂点の座標4/展開形→頂点の座標5/2次関数(展開形→頂点)/2次関数(展開形→グラフ5)/文字係数1/グラフの平行移動/放物線の移動/放物線の移動2/放物線の移動3/グラフと係数の符号/2次関数(3点→頂点)/2次関数の入試問題1/
このページのバックアップ・ページ
(グーグルブロガー版)は,こちら⇒ ■(例題対比)平方完成の変形
[標準形]
y=(x−p)2+q のグラフは y=x2 のグラフを x 軸の正の向きに p ,y 軸の正の向きに q だけ平行移動したもので,その頂点の座標は (p , q) である. 右図→ ○ 上で述べたように,2次関数が標準形:y=(x−p)2+q の形 で書かれていれば頂点の座標が分かるが,展開形:y=x2+bx+c の形で書かれているときはそのままでは頂点の座標は分からない. ○ そこで,2次関数が展開形で書かれているときにその頂点の座標を求めるためには,標準形に直さなければならない.この変形は「平方完成」と呼ばれる. ![]()
![]() ![]() [例題1] 次の式を (x−p)2+q の形に直せ.右参考→ (1) x2+4x (答案) ![]() x2+4x=(x+2)2−22=(x+2)2−4 …(答) (2) x2−6x (答案) ![]() x2−6x=(x−3)2−32=(x−3)2−9 …(答) (3) x2+8x+3 (答案) ![]() x2+8x+3=(x+4)2−42+3=(x+4)2−13 …(答) (定数項は最後に合計すればよい.) |
![]() [問題1] 次の式を (x−p)2+q の形に直せ. (1) 解答は 1 1 解答は 5 25 解答は 3 14 |
||
x2+3x のような式を平方完成すると,
3÷2=
だから分数が登場する.![]() 例 x2+3x=(x+ ![]() ![]() ![]() ![]() [例題2] x2−5x を (x−p)2+q の形に直せ. (答案) x2−5x=(x− ![]() ![]() ![]() ![]() |
[問題2] 次の式を (x−p)2+q の形に直せ. (1) 解答は 解答は 解答は |
||
○ 上で解説した平方完成の変形は,x2 の係数が 1 になっているときに使えるので,一般の2次式 ax2+bx+c を平方完成するためには,初めにx2 の係数 a でくくって括弧の中で x2 の係数を 1 にして平方完成の変形を行う.
ax2+bx+c=a(x2 + ![]() ※ x2 + ![]() ※ 定数項 c をいっしょに括弧でくくってしまうと最後に括弧をはずして計算する必要があり,二度手間となり計算間違いしやすいので,定数項 c はそのまま置いておくのが有利・・・入れてから出すのなら初めから入れない方がよい. 2x2+4x=2(x2 +2x)=2{ (x+1)2−1 } ここで外側の括弧 { ... } をはずすには,係数 2 を掛けなければならないことに注意 2{ (x+1)2−1 }=2(x+1)2−2 例 この計算では分数になっても構わずに進める. 2x2−3x=2(x2− ![]() ![]() ![]() =2{ (x− ![]() ![]() ![]() ![]() [例題3] (1) 3x2−x+1 を a(x−p)2+q の形に直せ. (答案) 3x2−x+1=3(x2− ![]() ![]() ![]() =3(x− ![]() ![]() ![]() ![]() (2) −2x2+3x−5 を a(x−p)2+q の形に直せ. (答案) −2x2+3x−5=−2(x2− ![]() ![]() ![]() =−2(x− ![]() ![]() ![]() ![]() |
[問題3] 次の式を a(x−p)2+q の形に直せ. (1) 解答は 2 2 8 解答は 3 2 2 解答は −2 1 5 解答は |
||
x2 の係数でくくるということは各係数を割ることなので,次の例のように分数の係数でくくれば各々の係数を分数で割ること,すなわちその逆数を掛けることになる.
![]() ![]() ※ 展開したときに元に戻るかどうか確かめるとよい. [例題4] (1) ![]() (答案) ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() |
[問題4] 次の式を a(x−p)2+q の形に直せ. (1) 解答は 解答は |
■このサイト内のGoogle検索■ |