大きな区分
高校数学 >> 高校数学Ⅰ・A >> 二次関数
現在地と前後の項目(サブメニュー)

2次関数のグラフ(入門)
2次関数のグラフ[標準形]
2次関数→頂点の座標
2次関数(標準形→頂点)
2次関数(標準形→グラフ)
2次関数(標準形→グラフ)2
2次関数(標準形→グラフ)3
2次関数(標準形→グラフ)4
平方完成の変形
平方完成
平方完成2
頂点の座標
展開形→頂点の座標2
展開形→頂点の座標3
展開形→頂点の座標4
展開形→頂点の座標5
2次関数(展開形→頂点)
2次関数(展開形→グラフ5)
2次関数の最大・最小
文字係数1
文字係数2
グラフの平行移動
放物線の移動
放物線の移動2
放物線の移動3
グラフと係数の符号
2次関数(3点→頂点)
2次関数の入試問題1
2次関数.2次方程式.センター問題

(例題対比)放物線の頂点の座標

[標準形]
○ y=a(x−p)2+q のグラフは y=ax2 のグラフを x 軸の正の向きに py 軸の正の向きに q だけ平行移動したもので,その頂点の座標は (p , q) である. 図1→

○ 2次関数のグラフ(放物線)は左右対称になっており,この対称軸を放物線のという.
 y 軸に平行( x 軸に垂直 )な直線の方程式は,x=p の形で表わされるので,放物線の軸の方程式は右図のように x=1 , x=2 , x=3 などと書かれる. 図2→
 放物線の軸の方程式 x=p における p の値は頂点の x 座標に等しい.そこで,頂点の座標が分かれば軸の方程式も分かる.

[例題1] 次の2次関数の軸の方程式と頂点の座標を求めよ.
(1) y=2(x−3)2+4
(答案)
____x=3,頂点 (3 , 4) …(答)

(2) y=3(x+4)2+5
(答案)
____x=−4,頂点 (−4 , 5) …(答)
x 座標の符号に注意. y=3(x−(- 4))2+5)と読む.

(3) y=−4(x−5)2−6
(答案)
____x=5,頂点 (5 , -6) …(答)
x2 の係数 - 4 はグラフの「形」(上に凸)だけに関係しており頂点の座標には関係ない.)

(4) y=.32n (x−3)2
(答案)
____x=3,頂点 (3 , 0) …(答)
(頂点が x 軸上にあるとき,このような式になる.y=.32n (x−3)2+0 と読む.)

(5) y=− .23n x2+4
(答案)
____x=0,頂点 (0 , 4) …(答)
(頂点が y 軸上にあるとき,このような式になる.
y=− .23n (x−0)2+4 と読む.)

[問題1] 次の2次関数の軸の方程式と頂点の座標を求めよ.
(1) y=3(x−5)2+2
________軸の方程式 x=,頂点の座標 (, )

採点する やり直す解答
(2) y=−3(x−2)2+6
________軸の方程式 x=,頂点の座標 (, )

採点する やり直す解答
(3) y=4(x+3)2+1
________軸の方程式 x=,頂点の座標 (, )

採点する やり直す解答
このページのバックアップ・ページ
(グーグルブロガー版)は,こちら⇒
図1
図2
※ 軸は「直線の方程式」として表わし,単に 12 とは書かずに,x=1x=2 などと書く.



(4) y=− .12n (x− .32n )2.54n

___軸の方程式 x=.nnn ,頂点の座標 (.nnn ,− .nnn )


採点する やり直す解答
(5) y=−5(x+3)2
___軸の方程式 x=,頂点の座標 (, )

採点する やり直す解答
(6) y=−x2−3
___軸の方程式 x=,頂点の座標 (, )

採点する やり直す解答
[展開形]
 2次関数が展開形で書かれているときは,これを平方完成して標準形に直せば軸の方程式,頂点の座標が分かる.

ax2+bx+c=a(x2+.ban x)+c

________________=a{ (x+.b2ann )2.b24a2nnn }+c

________________=a(x+.b2ann )2−a .b24a2nnn +c

________________=a(x+.b2ann )2.b2−4ac4annnnnn

※ 実際に問題を解くときには,この公式を丸暗記するのでなく,具体的な係数に応じて平方完成の変形をするとよい.(上の結果を公式として丸暗記するのは大変だから)

[例題2] 次の2次関数の軸の方程式と頂点の座標を求めよ.

(1) y=2x2+4x+7
(答案)
____y=2x2+4x+7=2(x2+2x)+7
___________________=2{ (x+1)2−1}+7
___________________=2(x+1)2−2+7
___________________=2(x+1)2+5
___________________x=−1,頂点 (−1 , 5) …(答)

[問題2] 次の2次関数の軸の方程式と頂点の座標を求めよ.
(1) y=3x2−6x+4
________軸の方程式 x=,頂点の座標 (, )

採点する やり直す 解説
(2) y=−2x2+8x
________軸の方程式 x=,頂点の座標 (, )

採点する やり直す 解説
(3) y=−x2−x+3

軸の方程式 x=− .nnn ,頂点の座標 (− .nnn , .nnn )


採点する やり直す 解説
(4) y=− .12n x2+4x
軸の方程式 x=,頂点の座標 (, )

採点する やり直す 解説
○===メニューに戻る

■[個別の頁からの質問に対する回答][放物線の頂点の座標について/17.7.26]
いつも利用させてもらってます。 問題の答えがあればな、と思いました。 どうなってこうなる!というのではなく、ただ答えがあればな、と。
=>[作者]:連絡ありがとう.この教材を作ったときは,解答は採点すれば分かるので,公式に数字を当てはめたら答が出るというような問題では特に解答を表示する必要はないと考えていましたが,最近は筆者も少しはまーるくなって,解答もある方が便利がよいかもなと考えるようになりましたので,解答を付けた頁を増やしています.まもなく付けます.

■このサイト内のGoogle検索■

△このページの先頭に戻る△
【 アンケート送信 】
… このアンケートは教材改善の参考にさせていただきます

この頁について,良い所,悪い所,間違いの指摘,その他の感想があれば送信してください.
○文章の形をしている感想は全部読ませてもらっています.
○感想の内で,どの問題がどうであったかを正確な文章で伝えていただいた改善要望に対しては,可能な限り対応するようにしています.(※なお,攻撃的な文章になっている場合は,それを公開すると筆者だけでなく読者も読むことになりますので,採用しません.)


質問に対する回答の中学版はこの頁,高校版はこの頁にあります