![]() ![]() *** 科目 *** 数Ⅰ・A数Ⅱ・B数Ⅲ高卒・大学初年度 *** 単元 *** 式と証明点と直線円軌跡と領域三角関数 指数関数対数関数微分不定積分定積分 高次方程式数列漸化式と数学的帰納法 平面ベクトル空間ベクトル確率分布 ※高校数学Bの「ベクトル」について,このサイトには次の教材があります.
この頁へGoogleやYAHOO ! などの検索から直接来てしまったので「前提となっている内容が分からない」という場合や「この頁は分かったがもっと応用問題を見たい」という場合は,他の頁を見てください. が現在地です. ↓ベクトルの定義 ↓ベクトルの和 ↓ベクトルの差 ↓2点間のベクトル ↓ベクトルの実数倍 ↓ベクトルの実数倍・和・差 ↓ベクトルの図形への応用 ↓同(2) ↓同(3) ↓同(4)-現在地 ↓同(5) ↓同(6) ↓内分点の内分点 ↓同(2) ↓点の存在範囲 ↓同(2) ↓2直線の交点1 ↓2直線の交点2 ↓外心,重心,垂心,内心,オイラー線 ↓ベクトル成分の計算 ↓ベクトルの大きさ ↓ベクトルの内積 ↓ベクトルの内積(成分) ↓ベクトルのなす角 ↓|a|の変形 ↓ベクトルの平行条件,垂直条件 ↓一直線上にある条件 ↓ベクトル方程式(内積) ↓ベクトルの公式一覧 センター試験.ベクトル.三角関数(2013年~) |
線分ABをm:nに外分する点Qとは,
AQ:QB=m:n となるような点QをABの外側にとったもの。(下図参照) ![]() |
≪要点1≫
2点A,Bを結ぶ線分ABをm:nに外分する点Qの位置ベクトルは ![]() ![]()
■[解説]
m>n のとき,図アにより m<n のとき,図イにより ![]() ![]() ![]() AQ:QB=m:n だからAQ:AB=m:(n-m) AQ,ABは逆向きだから ![]() |
≪要点2≫
△ABCの頂点A,B,Cの位置ベクトルを各々 ![]() ![]() ![]() ![]() ![]()
■[解説]
BCの中点Mの位置ベクトルは ![]() 次に,A(
![]() ![]() ![]() ![]() ここでは、三角形の重心の定義ではなく,定義から導かれる一つの性質:「重心は頂点と対辺を2:1に内分する」を用いて,重心を求める。 MからBNに平行線を引き,ACとの交点をPとすると, PN:NA=1:2だから, AG:GM=2:1 |
![]() ![]() |
■このサイト内のGoogle検索■ |